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Abstract

In this paper, we propose a new paradigm for solving Navier–Stokes equations. The proposed methodology is based

on a streamfunction–velocity formulation of the two-dimensional steady-state Navier–Stokes equations representing

incompressible fluid flows in two-dimensional domains. Similar formulations are also possible for three-dimensional

fluid flows. The main advantage of our formulation is that it avoids the difficulties associated with the computation

of vorticity values, especially on solid boundaries, encountered when solving the streamfunction–vorticity formulations.

Our formulation also avoids the difficulties associated with solving pressure equations of the conventional velocity–

pressure formulations of the Navier–Stokes equations.

We describe the new formulation of the Navier–Stokes equations and use this formulation to solve a couple of fluid

flow problems. We use a biconjugate gradient method to obtain the numerical solutions of the fluid flow problems and

provide detailed comparison data for the lid driven cavity flow problem. It is discovered that our new formulation suc-

cessfully provides high accuracy solutions for the benchmark problem. In addition, we also solve a problem of flow in a

rectangular cavity with aspect ratio 2 and compare our results qualitatively and quantitatively with numerical and

experimental results available in the literature. In all cases, we obtain high accuracy solutions with little additional cost.
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1. Introduction

Consider the two-dimensional incompressible Navier–Stokes equations in the traditional primitive var-

iable (velocity–pressure) formulation:
ut þ uux þ vuy ¼ �px þ mðuxx þ uyyÞ; ð1Þ

vt þ uvx þ vvy ¼ �py þ mðvxx þ vyyÞ; ð2Þ

ux þ vy ¼ 0: ð3Þ
Though this formulation accurately represents the fluid flow phenomena, its direct solution traditionally

has been difficult to obtain due to the pressure term in Eqs. (1) and (2). Partly in order to avoid handling

the pressure variable, an alternative formulation using streamfunction and vorticity has been used for sev-

eral decades. The alternative formulation introduces the streamfunction w and vorticity x:
wxx þ wyy ¼ �xðx; yÞ; ð4Þ

xt þ ðuxx þ vxyÞ ¼
1

Re
ðxxx þ xyyÞ; ð5Þ
where (x,y) 2 X, Re is the non-dimensional Reynolds number; the velocity components are defined as
uðx; yÞ ¼ wy ; vðx; yÞ ¼ �wx: ð6Þ
This formulation has been very successful and has been used by a large number of researchers over the past

several decades to test new methods for the numerical solutions of a variety of fluid flow problems. Typical

difficulty with this formulation consists in the specification of vorticity values at the no-slip boundaries; the

vorticity x is defined through the Poisson equation �x = wxx + wyy which needs to be solved discretely on

the boundaries so that boundary values of the vorticity can be specified for the vorticity transport equation

when this formulation is utilized. However, the values of vorticity x on the boundaries are generally

unspecified and one has to carry out a variety of numerical approximations in order to specify the boundary
values of vorticity.

In this paper, we propose the following finite difference formulation for solving the steady-state Navier–

Stokes equations. The discretization is carried out on a uniform grid of width h in both x and y directions

and the approximation at a grid point (x,y) utilizes the values of w at the eight nearest neighbors of (x,y) in

the compact stencil, and the values of velocities u,v at the nearest neighbors
� 28wðx; yÞ þ 8½wðxþ h; yÞ þ wðx� h; yÞ þ wðx; y þ hÞ þ wðx; y � hÞ� � ½wðxþ h; y þ hÞ
þ wðx� h; y þ hÞ þ wðx� h; y � hÞ þ wðxþ h; y � hÞ� � 3h½uðx; y þ hÞ � uðx; y � hÞ � vðxþ h; yÞ

þ vðx� h; yÞ� � Reh
4

uðx; yÞ½2ðwðxþ h; yÞ � wðx� h; yÞÞ � wðxþ h; y þ hÞ þ wðx� h; y þ hÞ

þ wðx� h; y � hÞ � wðxþ h; y � hÞ þ 2hðvðxþ h; yÞ � 2vðx; yÞ þ vðx� h; yÞÞ�

� Reh
4

vðx; yÞ½2ðwðx; y þ hÞ � wðx; y � hÞÞ � wðxþ h; y þ hÞ � wðx� h; y þ hÞ

þ wðx� h; y � hÞ þ wðxþ h; y � hÞ � 2hðuðx; y þ hÞ � 2uðx; yÞ þ uðx; y � hÞÞ� ¼ 0: ð7Þ
The velocities at a point (x,y) may be approximated as follow:
uðx; yÞ ¼ 3

4h
½wðx; y þ hÞ � wðx; y � hÞ� � 1

4
½uðx; y þ hÞ þ uðx; y � hÞ�; ð8Þ



54 M.M. Gupta, J.C. Kalita / Journal of Computational Physics 207 (2005) 52–68
vðx; yÞ ¼ � 3

4h
½wðxþ h; yÞ � wðx� h; yÞ� � 1

4
½vðxþ h; yÞ þ vðx� h; yÞ�: ð9Þ
The origins and history of this finite difference approximation are described in the following section of this

paper. This approximation has a truncation error of order O(h2). We use this approximation to solve two

fluid flow problems: the benchmark problem of incompressible fluid flow in a lid driven square cavity which

is solved for Reynolds numbers as high as 10,000, and a problem of flow in a lid driven rectangular cavity

with an aspect ratio of 2. In each case, we obtain solutions that agree very well, both qualitatively and quan-

titatively, with published results.
2. Biharmonic equation and origins of the streamfunction–velocity formulation

Consider the Dirichlet problem for the biharmonic equation:
o4/
ox4

þ 2
o4/

ox2oy2
þ o4/

oy4
¼ f ðx; yÞ; ðx; yÞ 2 X; ð10Þ

/ ¼ g1ðx; yÞ;
o/
on

¼ g2ðx; yÞ ðx; yÞ 2 oX; ð11Þ
where X is a closed convex domain in two dimensions and oX is its boundary.

Various approaches for the numerical solution of the boundary value problem (10) have been considered
in the literature [1,7–9,13,18]. A popular technique is to split it into two coupled Poisson equations for /
and n:
o
2/
ox2

þ o
2/
oy2

¼ n; ð12Þ

o2n
ox2

þ o2n
oy2

¼ f : ð13Þ
Each of these Poisson equations may be discretized using the standard five point approximations and

solved using fast Poisson solvers. The difficulty with this approach is that the boundary conditions for

the new variable n are undefined and need to be approximated from the discrete form of Eq. (12). The cou-

pled equation approach has been used by many authors (see [7,8] and other references for detailed

background).

Another traditional approach for solving the biharmonic equations is to discretize the biharmonic equa-

tion (Eq. 10) on a uniform grid using a 13 point approximation with truncation error of order h2 or using a

25 point approximation with truncation error of order h4. The thirteen point approximation of the bihar-
monic equation at a grid point (xi,yj) may be written as
20/i;j � 8½/iþ1;j þ /i;jþ1 þ /i�1;j þ /i;j�1� þ 2½/iþ1;jþ1 þ /i�1;jþ1 þ /i�1;j�1 þ /iþ1;j�1�
þ ð/iþ2;j þ /i;jþ2 þ /i�2;j þ /i;j�2Þ ¼ h4fi;j: ð14Þ
This approximation connects the values of /i,j in terms of 12 neighboring values of /. The above difference
approximation needs to be modified at grid points near the boundaries. Many such modifications were
discussed in [9]. There are further difficulties with the solution of the linear systems obtained through

the thirteen point discretization of the biharmonic equation. The direct solvers for solving the resulting sys-

tems of linear equations can only be used for moderate values of grid width h [9] and the conventional iter-

ative methods such as Jacobi or Gauss–Seidel [14,15] either converge very slowly or diverge.
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Certain second and fourth order compact finite difference approximations for the biharmonic equation

(Eq. 10) on a 9 point cell have been known for some time (see, e.g. [1,13,18]). The compact approach in-

volves discretizing the biharmonic equation using not just the grid values of the unknown solution / but

also the values of the gradients /x, and /y at selected grid points. As described in detail in [1], this approach

is advantageous because:

(i) the given boundary conditions are exactly satisfied and no further approximations need to be carried

out at the boundaries;

(ii) the proposed finite difference approximations are defined on a 9 point compact cell and no special

adjustments are needed at grid points close to the boundaries;

(iii) values of the gradients /x and /y are already computed and available at all grid points and need not

be further approximated from the computed values of the solution /.

The second order compact scheme for the biharmonic equation (Eq. 10) is given by
28/i;j � 8½/iþ1;j þ /i;jþ1 þ /i�1;j þ /i;j�1� þ ½/iþ1;jþ1 þ /i�1;jþ1 þ /i�1;j�1 þ /iþ1;j�1�

þ 3h½ð/xÞiþ1;j � ð/xÞi�1;j þ ð/yÞi;jþ1 � ð/yÞi;j�1� ¼
h4

2
fi;j: ð15Þ
This scheme discretizes two-dimensional biharmonic equations at a grid point (xi,yj) using the eight neigh-
boring values of /, two values of /x and two values of /y. Truncation error of this approximation is of order

h2; this finite difference scheme was obtained by employing the symbolic algebra package Mathematica [1].

Compatible approximations for /x and /y can also be obtained. The well known central difference

approximations of second order accuracy may be used:
ð/xÞi;j ¼
ð/iþ1;j � /i�1;jÞ

2h
; ð16Þ

ð/yÞi;j ¼
ð/i;jþ1 � /i;j�1Þ

2h
: ð17Þ
Another alternative is to use the fourth order approximations for /x and /y:
ð/xÞi;j ¼
3

4h
ð/iþ1;j � /i�1;jÞ �

1

4
ð/xÞiþ1;j þ ð/xÞi�1;j

� �
; ð18Þ

ð/yÞi;j ¼
3

4h
ð/i;jþ1 � /i;j�1Þ �

1

4
ð/yÞi;jþ1 þ ð/yÞi;j�1

� �
: ð19Þ
A fourth order compact scheme for the biharmonic equation is also available. This scheme uses, at a grid

point (xi,yj), the eight neighboring values of / in the compact cell and six values each of /x and /y. This

approximation also uses the values of the forcing function f(x,y) at four neighboring points. Truncation

error of the following approximation is of order h4
/i;j �
3

11
/iþ1;j þ /i;jþ1 þ /i�1;j þ /i;j�1

� �
þ 1

44
/iþ1;jþ1 þ /i�1;jþ1 þ /i�1;j�1 þ /iþ1;j�1

� �

þ 7h
66

ð/xÞiþ1;j � ð/xÞi�1;j þ ð/yÞi;jþ1 � ð/yÞi;j�1

h i
þ h
264

ð/xÞiþ1;jþ1 � ð/xÞi�1;jþ1 � ð/xÞi�1;j�1

h

þð/xÞiþ1;j�1 þ ð/yÞiþ1;jþ1 þ ð/yÞi�1;jþ1 � ð/yÞi�1;j�1 � ð/yÞiþ1;j�1

i

¼ h4

792
11f i;j þ ðfiþ1;j þ fi;jþ1 þ fi�1;j þ fi;j�1Þ
� �

: ð20Þ
Compatible fourth order approximations for /x and /y are given above.
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The approximations for the two-dimensional biharmonic equation were obtained using a Mathematica

code presented in [1]. Our two-dimensional code was subsequently extended to three-dimensional bihar-

monic equations in [2] to obtain a family of finite difference approximations on the 27 point compact cubic

cell.

For the present work, we extended the Mathematica code for the two-dimensional biharmonic equation
to obtain similar compact schemes for the Navier–Stokes equations. In order to accomplish this goal, we

transformed the streamfunction–vorticity form of the steady-state Navier–Stokes equations into a fourth

order partial differential equation
Fig. 1.

the lid
o4w
ox4

þ 2
o4w

ox2oy2
þ o4w

oy4
� Reu

o3w
ox3

þ o3w
oxoy2

� �
� Rev

o3w
ox2oy

þ o3w
oy3

� �
¼ 0: ð21Þ
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Comparisons of (a) horizontal velocity along the vertical centerline and (b) vertical velocity along the horizontal centerline for

-driven square cavity flows from Re = 100 to Re = 3200.
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For the purpose of deriving the compact difference schemes for This equation, we treat the velocities u and v

in the above equation as locally fixed at the grid point (x,y). Our Mathematica code produces the following

finite difference scheme for the Navier–Stokes equations; truncation error of this scheme is of order h2
Fig. 2.

the lid
� 28wðx; yÞ þ 8½wðxþ h; yÞ þ wðx� h; yÞ þ wðx; y þ hÞ þ wðx; y � hÞ� � ½wðxþ h; y þ hÞ
þ wðx� h; y þ hÞ þ wðx� h; y � hÞ þ wðxþ h; y � hÞ� � 3h½uðx; y þ hÞ � uðx; y � hÞ � vðxþ h; yÞ

þ vðx� h; yÞ� � Reh
4

uðx; yÞ½2ðwðxþ h; yÞ � wðx� h; yÞÞ � wðxþ h; y þ hÞ þ wðx� h; y þ hÞ

þ wðx� h; y � hÞ � wðxþ h; y � hÞ þ 2hðvðxþ h; yÞ � 2vðx; yÞ þ vðx� h; yÞÞ�

� Reh
4

vðx; yÞ½2ðwðx; y þ hÞ � wðx; y � hÞÞ � wðxþ h; y þ hÞ � wðx� h; y þ hÞ

þ wðx� h; y � hÞ þ wðxþ h; y � hÞ � 2hðuðx; y þ hÞ � 2uðx; yÞ þ uðx; y � hÞÞ� ¼ 0: ð22Þ
We have also derived a fourth order compact scheme for Navier–Stokes equations in streamfunction–

velocity variables and details of this scheme will be reported in future.
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Comparisons of (a) horizontal velocity along the vertical centerline and (b) vertical velocity along the horizontal centerline for

-driven square cavity flows from Re = 5000 to Re = 10,000.
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Fig. 3. Streamfunction contours for the lid-driven square cavity flows for (a) Re = 100, (b) Re = 400, (c) Re = 1000 and (d) Re = 2000

(all computations obtained with 81 · 81 grid).
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Fig. 4. Streamfunction contours for the lid-driven square cavity flows for (a) Re = 3200, (b) Re = 5000, (c) Re = 7500 and (d)

Re = 10,000 (all computations obtained with 161 · 161 grid).
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3. Solution of algebraic systems

We now discuss the solution of algebraic systems associated with the newly proposed finite difference

approximations. The finite difference approximation given in Eqs. (7)–(9) may be rewritten as follows:
Fig. 5.

Re = 2
wi�1;j�1 � 8wi;j�1 þ wiþ1;j�1 � 8wi�1;j þ 28wi;j � 8wiþ1;j þ wi�1;jþ1 � 8wi;jþ1 þ wiþ1;jþ1

� 3h ui;j�1 � ui;jþ1 þ viþ1;j � vi�1;j

� �
� 0:5Reh2 vi;j uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1

� �	
� ui;j viþ1;j þ vi�1;j þ vi;jþ1 þ vi;j�1

� �

¼ 0; ð23Þ

ui;j ¼
3

4h
ðwi;jþ1 � wi;j�1Þ �

1

4
ui;jþ1 þ ui;j�1

� �
; ð24Þ

vi;j ¼ � 3

4h
ðwiþ1;j � wi�1;jÞ �

1

4
viþ1;j þ vi�1;j

� �
: ð25Þ
Note that Eq. (23) is derived from Eq. (7) using the definitions of the velocities u and v in Eq. (6) and the

approximations in Eqs. (16) and (17). This defines our discrete problems with variables wi,j, ui,j and vi,j at

each point of the discrete region. The system of equations arising from Eq. (23) leads to the following

matrix form:
AW ¼ fðRe; u; vÞ; ð26Þ
(b)

(d)

(a)

(c)

Post-processed vorticity contours for the lid-driven square cavity flows for (a) Re = 100, (b) Re = 400, (c) Re = 1000 and (d)

000 (all computations obtained with 81 · 81 grid).
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(a)
(c)Fig. 6. Post-processed vorticity contours for the lid-driven square cavity flows for (a)Re= 3200, (b)Re= 5000, (c)Re= 7500 and (d)Re= 10,000 (all computations obtained with 161·161 grid).60M.M. Gupta, J.C. Kalita / Journal of Computational Physics 207 (2005) 52–68
where for a grid of size m · n, the coefficient matrix A is of order mn, and W and f(Re,u,v) are mn-com-

ponent vectors. We solve this problem using an outer–inner iteration procedure. In a typical outer cycle,

we solve Eq. (26) using the biconjugate gradient stabilized method (BiCGStab) [11,15,17,19] which con-

stitutes inner iterations. Once (26) is solved, we solve the tridiagonal linear systems arising from Eqs.

(24) and (25). This constitutes one outer iteration cycle. We utilize a relaxation parameter k inside both
the inner as well as the outer iteration cycles for w. For larger values of Reynolds number, we needed

smaller values of k.
We note that classical iterative methods are extremely slow to converge for the case of Biharmonic

equation (Re = 0) as seen in [1,2]. We also had slow convergence when conjugate gradient (CG)

[11,15,17,19] method was used for larger values of Re (>400). On the other hand, we encountered

no computational difficulties with the use of the BiCGStab [11,15,17,19] and all the results reported

in the present study were obtained with BiCGStab method. All of our computations were carried

out on a PC with a Pentium 4 processor and 256 mB RAM; the computations were stopped when
the maximum w-error between two successive outer iteration steps was smaller than 0.5 · 10�6. For

Re = 100, we used zero initial data whereas for larger Re�s we utilized the currently known solution

profile of the previously smaller Re to compute the solution of the next larger Re.
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4. Numerical experiments

4.1. Test problem 1

We first consider the problem of two-dimensional lid-driven square cavity flow which is extensively used
as a benchmark for code validation of the incompressible N–S equations. The cavity is defined in the square

0 6 x,y 6 1 and the governing equations are given by the steady-state forms of Eqs. (4) and (5):
Table 1

Strength and location of the centers of primary vortex for the lid-driven square cavity problem

Re wmin x y

100 [20] �0.103 0.6188 0.7375

[6] �0.103 0.6172 0.7344

[16] �0.103 0.6167 0.7417

[10] �0.103 0.6196 0.7373

Present �0.103 0.6125 0.7375

400 [20] �0.114 0.5563 0.6000

[6] �0.114 0.5547 0.6055

[16] �0.113 0.5571 0.6071

[10] �0.112 0.5608 0.6078

Present �0.113 0.5500 0.6125

1000 [20] �0.117 0.5438 0.5625

[6] �0.118 0.5313 0.5625

[16] �0.116 0.5286 0.5643

[10] �0.118 0.5333 0.5647

[4] �0.119 0.5308 0.5652

[5] �0.116 0.5313 0.5586

Present �0.117 0.5250 0.5625

2000 [20] �0.112 0.5250 0.5500

[10] �0.120 0.5255 0.5490

Present �0.118 0.5250 0.5500

3200 [12] �0.115 – –

[6] �0.120 0.5165 0.5469

Present �0.122 0.5188 0.5438

5000 [20] �0.092 0.5125 0.5313

[6] �0.119 0.5117 0.5352

[12] �0.112 – –

[5] �0.114 0.5156 0.5313

[10] �0.121 0.5176 0.5373

[3] �0.122 0.5113 0.5283

Present �0.122 0.5125 0.5375

7500 [6] �0.120 0.5117 0.5322

[5] �0.111 0.5156 0.5234

[10] �0.122 0.5176 0.5333

[3] �0.122 0.5132 0.5321

Present �0.122 0.5125 0.5313

10,000 [6] �0.120 0.5117 0.5333

[5] �0.105 0.5156 0.5234

[16] �0.103 0.5140 0.5307

[3] �0.122 0.5113 0.5302

Present �0.122 0.5125 0.5313
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wxx þ wyy ¼ �xðx; yÞ; ð27Þ

xxx þ xyy � Reðuxx þ vxyÞ ¼ 0: ð28Þ

The fluid motion is generated by the sliding motion of the top wall of the cavity (y = 1) in its own plane
from left to right. Boundary conditions on the top wall are given as u = 1, v = 0. On all other walls of

the cavity the velocities are zero (u = v = 0). Further the streamfunction values on all four walls are zero

(w = 0).
2

th and location of the centers of secondary vortex: bottom of the lid-driven square cavity

Bottom left Bottom right

wmax x y wmax x y

[20] 1.94e � 6 0.0375 0.0313 1.14e � 5 0.9375 0.0563

[6] 1.75e � 6 0.0313 0.0391 1.25e � 5 0.9453 0.0625

[16] 2.05e � 6 0.0333 0.0250 1.32e � 5 0.9417 0.0500

[10] 1.72e � 6 0.0392 0.0353 1.22e � 5 0.9451 0.0627

[5] 1.63e � 6 0.0313 0.0391 1.23e � 5 0.9453 0.0625

Present 1.83e � 6 0.0375 0.0375 1.45e � 5 0.9375 0.0625

[20] 1.46e � 5 0.0500 0.0500 6.45e � 4 0.8875 0.1188

[6] 1.42e � 5 0.0508 0.0469 6.42e � 4 0.8906 0.1250

[16] 1.45e � 5 0.0500 0.0429 6.44e � 4 0.8857 0.1143

[10] 1.30e � 5 0.0549 0.0510 6.19e � 4 0.8902 0.1255

Present 1.30e � 5 0.0500 0.0500 6.48e � 4 0.8875 0.1250

[20] 2.24e � 4 0.0750 0.0813 1.74e � 3 0.8625 0.1063

[6] 2.31e � 4 0.0859 0.0781 1.75e � 3 0.8594 0.1094

[16] 2.17e � 4 0.0857 0.0714 1.70e � 3 0.8643 0.1071

[10] 2.22e � 4 0.0902 0.0784 1.69e � 3 0.8667 0.1137

[5] 3.25e � 4 0.0859 0.0820 1.91e � 3 0.8711 0.1094

[4] 2.33e � 4 0.0833 0.0781 1.73e � 3 0.8640 0.1118

Present 2.02e � 4 0.0875 0.0750 1.70e � 3 0.8625 0.1125

[20] 6.90e � 4 0.0875 0.1063 2.60e � 3 0.8375 0.0938

[10] 7.26e � 4 0.0902 0.1059 2.44e � 3 0.8471 0.0980

Present 8.58e � 4 0.0875 0.1000 2.41e � 3 0.8375 0.1000

[6] 9.78e � 4 0.0859 0.1094 3.14e � 3 0.8125 0.0859

Present 1.03e � 3 0.0813 0.1188 2.86e � 3 0.8125 0.0875

[20] 1.67e � 3 0.0625 0.1563 5.49e � 3 0.8500 0.0813

[6] 1.36e � 3 0.0703 0.1367 3.08e � 3 0.8086 0.0742

[10] 1.35e � 3 0.0784 0.1313 3.03e � 3 0.8078 0.0745

[5] 2.22e � 3 0.0664 0.1484 4.65e � 3 0.8301 0.0703

[3] 1.37e � 3 0.0725 0.1370 3.07e � 3 0.8041 0.0725

Present 1.32e � 3 0.0750 0.1313 2.96e � 3 0.8000 0.0750

[6] 1.47e � 3 0.0645 0.1504 3.28e � 3 0.7813 0.0625

[10] 1.51e � 3 0.0706 0.1529 3.20e � 3 0.7922 0.0667

[5] 4.76e � 3 0.0703 0.1289 8.32e � 3 0.8828 0.0820

[3] 1.53e � 3 0.0642 0.1526 3.23e � 3 0.7900 0.0648

Present 1.60e � 3 0.0688 0.1500 3.05e � 3 0.7813 0.0625

[6] 1.52e � 3 0.0586 0.1641 3.42e � 3 0.7656 0.0586

[5] 6.23e � 3 0.0781 0.1133 9.86e � 3 0.8945 0.0820

[3] 1.62e � 3 0.0588 0.1623 3.19e � 3 0.7747 0.0588

Present 1.50e � 3 0.0623 0.1564 3.22e � 3 0.7813 0.0625



Table 3

Strength and location of the centers of secondary vortex: top left side wall of the lid-driven square cavity

Re wmax x y

2000 Present 1.22e � 4 0.0375 0.8875

3200 [6] 7.28e � 4 0.0547 0.8984

Present 7.33e � 4 0.0563 0.9000

5000 [6] 1.46e � 3 0.0625 0.9102

[5] 1.75e � 3 0.0625 0.9102

[10] 1.40e � 3 0.0667 0.9059

[3] 1.45e � 3 0.0635 0.9092

Present 1.54e � 3 0.0688 0.9125

7500 [6] 2.05e � 3 0.0664 0.9141

[5] 3.14e � 3 0.0664 0.9141

[10] 2.06e � 3 0.0706 0.9098

[3] 2.13e � 3 0.0669 0.9116

Present 2.07e � 3 0.0688 0.9125

10,000 [6] 2.42e � 3 0.0703 0.9141

[5] 4.03e � 3 0.0664 0.9141

[3] 2.63e � 3 0.0702 0.9108

Present 2.50e � 3 0.0688 0.9188
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As described in the previous section, we solve Eqs. (23)–(25) to obtain the streamfunction w and veloc-

ities u and v at each grid point. The vorticity values are determined through post processing using a discret-

ized form of Eq. (27).

In Fig. 1, we present comparisons of the horizontal velocities on the vertical centerline and the vertical

velocities on the horizontal centerline of the square cavity for Reynolds numbers ranging from 100 to 3200

and compare our data with that from Ghia et al. [6]. While the data for Ghia et al. [6] was obtained using a

129 · 129 grid, our data is obtained using a 41 · 41 grid (Re = 100), a 81 · 81 grid (Re = 400 and 1000), and

a 161 · 161 grid (Re = 3200). In each case, our velocity profiles exhibit a perfect match with Ghia�s results.
In Fig. 2, we present similar data for larger values of the Reynolds number (5000 6 Re 6 10000). While
Table 4

Strength and location of the centers of tertiary vortex: bottom of the lid-driven square cavity

Re Bottom left Bottom right

wmin x y wmin x y

3200 [6] �6.33e � 8 0.0078 0.0078 �2.52e � 7 0.9844 0.0078

Present �3.74e � 8 0.0063 0.0063 �2.37e � 7 0.9875 0.0125

5000 [6] �7.09e � 8 0.0117 0.0078 �1.43e � 6 0.9805 0.0195

[5] �2.33e � 7 0.0117 0.0098 �2.47e � 5 0.9668 0.0293

[3] �6.67e � 8 0.0079 0.0079 �1.43e � 6 0.9786 0.0188

Present �5.15e � 8 0.0063 0.0063 �1.70e � 6 0.9750 0.0188

7500 [6] �1.83e � 7 0.0117 0.0117 �3.28e � 5 0.9492 0.0430

[3] �2.04e � 7 0.0112 0.0118 �3.28e � 5 0.9517 0.0422

Present �1.64e � 7 0.0063 0.0125 �1.89e � 5 0.9500 0.0375

10,000 [6] �7.76e � 7 0.0156 0.0195 �1.31e � 4 0.9336 0.0625

[3] �1.13e � 6 0.0173 0.0201 �1.40e � 4 0.9351 0.0675

Present �8.64e � 7 0.0125 0.0187 �1.73e � 5 0.9563 0.0375



Fig. 7. Convergence history of the w-error for the lid-driven square cavity flow on a 41 · 41 grid on a PC with Pentium 4 processor and

256 mB RAM.

Table 5

Convergence data and relaxation parameter k values for the lid-driven square cavity problem on a 41 · 41 grid on a PC with Pentium 4

processor and 256 mB RAM

Re CPU (s) Iterations k

100 30.086 1485 1.425

400 30.674 1155 1.025

1000 131.986 4096 0.500

2000 571.010 10,126 0.275

3200 724.445 24,413 0.125

Table 6

Strength and location of the centers of primary vortex for the rectangular lid-driven cavity flows with aspect ratio = 2

Re 100 400 1000 1500

Primary [5] �0.1033 �0.1124 �0.1169 –

(Top) (0.6172,1.7344) (0.5547,1.5938) (0.5273,1.5625) –

Present �0.1031 �0.1131 �0.1182 �0.1189

(0.6125,1.7375) (0.550,1.6125) (0.5250,1.5875) (0.5250,1.5750)

Primary [5] 7.83e � 4 9.09e � 3 0.0148 –

(Bottom) (0.5391,0.5859) (0.4297,0.8125) (0.3516,0.7891) –

Present 5.232e � 4 8.021e � 3 0.0125 0.0140

(0.5625,0.6000) (0.4375,0.8625) (0.3250,0.8750) (0.3498,0.8250)

Secondary [5] �1.49e � 8 �2.57e � 7 �1.08e � 5 –

(Bottom left) (0.0313,0.0313) (0.0391,0.0469) (0.0977,0.1094) –

Present �1.055e � 8 �2.8473e � 7 �6.7575e � 6 �9.221e � 5

(0.0250,0.0375) (0.0500,0.0500) (0.1000,0.1250) (0.1750,0.2000)

Secondary [5] �3.35e � 7 �1.46e � 7 �4.59e � 5 –

(Bottom right) (1.0000,0.3750) (0.9688,0.0391) (1.0000,0.3750) –

Present �1.2073e � 8 �1.4215e � 7 �1.5687e � 7 �5.9117e � 7

(0.9750,0.0375) (0.9500,0.0375) (0.9600,0.0420) (0.9375,0.0625)

Tertiary Present – – – 1.7793e � 9

(Bottom left) (–) (–) (–) (0.0125,0.0125)
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Fig. 8. (a) Horizontal velocity along the vertical centerline and (b) vertical velocity along the horizontal centerline for the rectangular

lid-driven cavity flows with aspect ratio = 2 from Re = 100 to Re = 1500.
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Ghia�s results were obtained using 257 · 257 grids, we are able to obtain matching results with a 161 · 161

grid.

In Fig. 3, we exhibit the well known streamfunction contours for 100 6 Re 6 2000 while Fig. 4 contains

the corresponding contours for 3200 6 Re 6 10,000. All of these graphs exhibit the typical separations and

secondary vortices at the bottom corners of the cavity as well as at the top left of the square cavity. We also
observe the evolution of tertiary vortices in the bottom corners of the cavity in Fig. 4. The tertiary vortices

become quite visible for Re = 5000 and gain a significant size for Re P 7500. In Figs. 5 and 6, we exhibit the

vorticity profiles for the range of the Reynolds numbers; these profiles are well known in the literature and

exhibit no surprises thereby confirming the fact that our formulation yields qualitatively accurate solutions.

In Tables 1–4, we provide the quantitative comparison data for our solutions. In Table 1, we present the

location of the center of the primary vortex and the value of streamfunction w at vortex center. This data is

provided for 100 6 Re 6 10,000 and available comparison data from the literature is also given in this

table. In each case our solutions exhibit an excellent match with the best and most accurate solutions avail-
able in the literature. In Table 2, we present data on the secondary vortices (100 6 Re 6 10,000) in the bot-

tom left and right corners of the square cavity. Again, our solutions exhibit an excellent match with the best



(a) (b)

(c) (d)Fig. 9. Streamlines for the rectangular lid-driven cavity flows with aspect ratio =2: (a) Re = 100,(b)Re=400,(c)Re=1000 and(d)Re=1500(allcomputations obtainedwith81·161 grid).
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results in the literature. In Table 3, we present data on the secondary vortices on the left side wall near the

top of the square cavity. This data is presented for 2000 6 Re 6 10,000. While our results again exhibit an

excellent match with the published results, we observe that our formulation allows us to detect the separa-

tion on the left side wall near the top of the square cavity for Reynolds numbers as small as Re = 2000. In
Table 4, we present data on the tertiary vortices for 3200 6 Re 6 10,000 and our results match very well

with those in the literature.
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In Fig. 7, we exhibit the convergence history of the w-errors on a 41 · 41 grid. As expected, the conver-

gence for large Reynolds numbers requires larger number of iterations; in Table 5, we present the conver-

gence data (and CPU time) for these cases. It is heartening to note that we were able to obtain the

converged solutions for, e.g., Re = 3200 on a PC (with Pentium 4 and 256 mB RAM) in about 12 min of

computation time.

4.2. Test problem 2

We now consider the problem of a lid driven flow in a rectangular cavity with aspect ratio of 2; this is

similar to the previous problem except for the aspect ratio. This problem is defined and solved in the rect-

angle 0 6 x 6 1, 0 6 y 6 2. We solved this problem for Reynolds numbers Re ranging from 100 to 1500.

This problem was earlier solved by Bruneau and Jouron [5] and we provide comparison data from their

study in Table 6.
In Fig. 8, we exhibit the graphs of horizontal velocity along the vertical centerline and vertical velocity

along the horizontal centerline for 100 6 Re 6 1500. Fig. 9 contains the streamfunction contours for this

problem for 100 6 Re 6 1500. In each of these cases, we observe two rotating primary vortices as well

as secondary vortices in the bottom corners of the rectangular cavity. There is also a tertiary vortex in

the case of Re = 1500 though this vortex is not clearly visible in Fig. 9(d). In Table 6, we present quanti-

tative data on the vortex center locations and the strength of primary, secondary and tertiary vortices

for 100 6 Re 6 1500; comparison data from [5] is also presented in this table.

We note further that Bruneau and Jouron [5] computed this problem for Re 6 1000 and expected the
steady flow to become turbulent for Reynolds numbers close to 1000. In our computations, we found

the flow to stay laminar even at Re = 1500; our formulation allows us to obtain accurate converged solu-

tions for this problem for Re 6 1500.
5. Conclusions

In this paper, we introduce a new paradigm for solving the incompressible Navier–Stokes equations. Our
formulation uses streamfunction and velocity as variables and avoids the difficulties traditionally faced with

the primitive variables formulation and with streamfunction–vorticity formulation. Our formulation is used

to solve several fluid flow problems and enables us to obtain high accuracy solutions with great efficiency.

The present formulation has truncation error of second order; a fourth order method is presently being

examined and results would be presented in future. We have had success with the use of multigrid technique

in conjunction with this formulation for the Stokes flow (Re = 0) [1]. We are currently working to extend

the multigrid technique to fluid flow problems for larger values of Reynold�s numbers.
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